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Vaccinium myrtillus (Bilberry) Extracts Reduce Angiogenesis
In Vitro and In Vivo
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Vaccinium myrtillus (Bilberry) extracts (VME) were tested for effects on angiogenesis in vitro and in
vivo. VME (0.3–30 mgml�1) and GM6001 (0.1–100mM; a matrix metalloproteinase inhibitor)
concentration-dependently inhibited both tube formation and migration of human umbilical vein
endothelial cells (HUVECs) induced by vascular endothelial growth factor-A (VEGF-A).
In addition, VME inhibited VEGF-A-induced proliferation of HUVECs. VME inhibited
VEGF-A-induced phosphorylations of extracellular signal-regulated kinase 1/2 (ERK 1/2) and
serine/threonine protein kinase family protein kinase B (Akt), but not that of phospholipase Cg
(PLCg). In an in vivo assay, intravitreal administration of VME inhibited the formation of
neovascular tufts during oxygen-induced retinopathy in mice. Thus, VME inhibited angiogenesis
both in vitro and in vivo, presumably by inhibiting the phosphorylations of ERK 1/2 and Akt.
These findings indicate that VME may be effective against retinal diseases involving angiogenesis,
providing it can reach the retina after its administration. Further investigations will be needed to
clarify the major angiogenesis-modulating constituent(s) of VME.
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Introduction

Angiogenesis is the process by which blood vessels are

formed from pre-existing ones. In adults, physiological

angiogenesis is observed only at restricted sites, such as

the endometrium and ovarian follicle, and it is normally

transient. However, abnormal angiogenesis causes

many ocular diseases, such as diabetic retinopathy (1),

age-related macular degeneration (2) and neovascular

glaucoma (3). Previous studies have revealed that

angiogenesis is explicitly increased by several growth

factors, such as VEGF (4), basic fibroblast growth factor

(5) and platelet-derived growth factor (6).
Galardy et al. (7) reported that a carcinoma extract

implanted in the rat cornea can be used to stimulate

angiogenesis from the vessels of the limbus, and also that
continuous administration of GM6001, a broad-spectrum
matrix metalloproteinase (MMP) inhibitor, reduced both

the vessel number and vessel area. More recently, Koike
et al. (8) found that GM6001 decreases tubulogenesis

in microvascular endothelial cells from young humans.
These findings suggest that MMP plays a pivotal role in

angiogenesis, and that MMP inhibitors may be effective
angiostatic agents.
Vaccinium myrtillus (Bilberry), a member of the

Ericaceous family, can be found in the mountains and

forests of Europe and North America. Vaccinium
myrtillus extracts (VME) containing 15 different
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anthocyanins (9,10) have been shown to possess potent
antioxidant properties (9), stabilize collagen fibers and
promote collagen biosynthesis (11) and inhibit platelet
aggregation (12). Animal studies have demonstrated
VME to be of benefit in improving vascular tone,
blood flow and vasoprotection (13,14). When adminis-
tered to healthy subjects or to patients with visual
disorders, VME (either alone or in combination with
b-carotene and vitamin E) induces a significant improve-
ment in night vision, a quicker adaptation to darkness
and a more rapid restoration of visual acuity following
exposure to a flash of bright light (11). Hence, bilberries
(or VME) have been utilized as a popular edible aid
or supplement for asthenopia and improved visual
function. Furthermore, an extract of V. myrtillus fruits
(a low concentration of anthocyanosides in a highly
purified extract) has been reported to induce significant
improvements in ophthalmoscopic and angiographic
images in diabetic or hypertensive patients (15), but it
has remained unclear whether it inhibits angiogenesis.
Roy et al. (16) noted that in the human keratinocytes

cell-line HaCaT, VEGF expression is decreased by a
variety of berry seeds, such as bilberry, raspberry,
strawberry, blueberry and optiberry (a blend of wild
blueberry, strawberry, cranberry and raspberry seeds,
and elderberry and wild bilberry samples). They also
observed that optiberry inhibits the tube formation
among human microvascular endothelial cells induced
by basement proteins from mouse tumors. These findings
suggest that certain berry seeds have inhibitory actions
against angiogenesis, although, the precise mechanism
remains unclear. We therefore examined the in vitro
effects of VME on the angiogenesis (tube formation, and
cell proliferation and migration) and phosphorylation
of extracellular signal-regulated kinase 1/2 (ERK 1/2),
phospholipase Cg (PLCg) and serine/threonine protein
kinase family protein kinase B (Akt) that are induced by
vascular endothelial growth factor-A (VEGF-A). We also
evaluated the in vivo effects of VME on oxygen-induced
retinopathy in mice.

Methods

Reagents

GM6001, N-[(2S)-2-(methoxycarbonylmethyl)-4-methyl-
pentanoyl]-L-tryptophan methylamide, and VEGF-A
were purchased from Sigma (St. Louis, MO, USA)
and Kurabo (Osaka, Japan), respectively. The oxygen-
scavenger N-acetyl-L-cysteine (NAC) and Trolox, a solu-
ble vitamin E derivative, were purchased from Wako
(Osaka, Japan) and Sigma, respectively. Antibodies
against phosphorylated ERK 1/2 (Thr 202/Tyr 204),
total ERK 1/2, phosphorylated PLCg (Tyr 783) and total
PLCg were purchased from Cell Signaling Technology
(Beverly, MA, USA). An antibody against b-actin was

purchased from Sigma. VME were purchased from
Fushimi Chemical Co., Ltd (Kyoto, Japan). It was
extracted in accordance to a method as previously
described by Nakajima et al. (9). Briefly, VME were
extracted from commercially available paste frozen fruits
of bilberry using ethanol, filtrated and concentrated.
Then ethanol extracts of bilberry were applied to column
chromatography, removed ethanol and freeze-dried to
powder. Fifteen kinds of anthocyanin components of
VME were ascertained by use of high-pressure liquid
chromatography. VME were containing 25% anthocyanin
(conversion of anthocyanin into delphinidin), and 15 kinds
of anthocyanin were Delphinidin 3-O-galacto
pyranoside, Delphinidin 3-O-glucopyranoside, Cyanidin
3-O-galactopyranoside, Delphinidin 3-O-alabinopyrano-
side, Cyanidin 3-O-glucopyranoside, Petunidin 3-O-galac-
topyranoside, Cyanidin 3-O-alabinopyranoside, Petunidin
3-O-glucopyranoside, Paeonidin 3-O-galactopyranoside,
Petunidin 3-O-alabinopyranoside, Paeonidin 3-O-gluco-
pyranoside, Malvidin 3-O-glucopyranoside, Paeonidin
3-O-alabinopyranoside, Malvidin 3-O-galactopyranoside
and Malvidin 3-O-alabinopyranoside, respectively.

Animals

C57BL/6 mice were obtained from Japan SLC
(Hamamatsu, Japan). All mice were handled according
to the ARVO statement for the Use of Animals in
Ophthalmic and Vision Research, and the experiments
were approved and monitored by the Institutional
Animal Care and Use Committee of Gifu
Pharmaceutical University.

Cell Culture

Human umbilical vein endothelial cells (HUVECs,
Kurabo) were cultured in a growth medium (HuMedia-
EG2; Kurabo) at 37�C in a humidified atmosphere of
5% CO2 in air. The HuMedia-EG2 medium consists of a
base medium (HuMedia-EB2, Kurabo) supplemented with
2% fetal bovine serum (FBS), 10 ngml�1 recombinant
human epidermal growth factor, 1 mgml�1 hydrocortisone,
50 mgml�1 gentamicin, 50 ngml�1 amphotericin B,
5 ng ml�1 recombinant human basic fibroblast growth
factor -B and 10 mgml�1 heparin.

Tube Formation Assay

An angiogenesis assay kit (Kurabo) was used according
to the manufacturer’s instructions. Briefly, HUVECs
co-cultured with fibroblasts were cultivated in the
presence or absence of various concentrations of test
drugs plus VEGF-A (10 ngml�1). After 11 days, cells
were fixed in 70% ethanol. The cells were incubated with
diluted primary antibody (mouse anti-human CD31,
1 : 4000) for 1 h at 37�C, and with the secondary antibody
(goat anti-mouse IgG alkaline phosphatase-conjugated
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antibody, 1 : 500) for 1 h at 37�C, and visualization was
achieved using 5-bromo-4-chloro-3-indolyl phosphate/
nitro blue tetrazolium. Images were obtained from five
different fields (5.5mm2 per field) for each well, and tube
area, length, joints and paths were quantified using
Angiogenesis Image Analyzer Ver.2 (Kurabo).

Cell Proliferation Assay

HUVECs were seeded into 96-well plates at a density
2000 cells per well at 37�C for 12 h, and preincubated
in HuMedia-EB2 containing 2% FBS at 37�C for 6 h.
The HUVECs were incubated for 48 h in fresh medium
containing VEGF-A (10 ngml�1) with or without various
concentrations of test drugs, and then incubated for a
further 48 h in the same (fresh) medium. After incuba-
tion, the viable cell numbers were measured by means
of a WST-8 assay. Briefly, 10 ml of CCK-8 (Dojindo,
Kumamoto, Japan) was added to each well, incubated at
37�C for 3 h and the absorbance measured at 492 nm
(reference wave, 660 nm).

Cell Migration Assay

Cell migration was evaluated using a modified Boyden
chamber assay (17). The microporous membrane (8mm)
of 24-well cell-culture inserts (BD Bioscences, Bedford,
MA, USA) was coated with human fibronectin (BD
Bioscences). HUVECs were collected by centrifugation,
resuspended in HuMedia-EB2 containing 0.1% bovine
serum albumin (BSA) and seeded into the chamber
(5� 104 cells per well). Each well was filled with
HuMedia-EB2 containing 0.1% BSA and VEGF-A
(10 ngml�1) with or without test drugs, and the chamber
was incubated at 37�C for 4 h in 5% CO2. Any migrated
cells on the upper surface of the membrane were removed
by scrubbing with a cotton swab. Migrated cells on the
lower surface of the membrane were fixed in Diff-Quik
Fixative (Sismex, Kobe, Japan) and stained using
hematoxylin. The migrated cells were then counted in
five fields (for each membrane) under a microscope at
�200 magnification and the average number per field was
calculated.

Immunoblotting

Subconfluent HUVECs were incubated in HuMedia-EB2
containing 2% FBS for 6 h at 37�C in a 5% CO2

atmosphere. Then, the medium was changed to
Dulbecco’s modified Eagle medium containing 25mM
2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid
(Invitrogen, Grand Island, NY, USA) and either 2%
FBS or 0.5% FBS (for Akt detection), and incubation
allowed to proceed for a further 1 or 18 h, respectively, at
37�C. Next, the medium was changed to fresh medium
(constituents as above) containing VEGF-A (10 ngml�1)

concomitantly with or without VME (30mgml�1), and

incubation continued for 5 or 10min (we performed pilot

study for time course of changes in phosphorylated –

ERK 1/2 and Akt after VEGF treatment, and they were

the highest at 5 and 10min after that, respectively). The

HUVECs were washed two times with 10mM NaF in

PBS, lyzed in RIPA buffer (Sigma) supplemented with

protease inhibitor cocktail (Sigma), phosphatase inhibitor

cocktail 1 (Sigma) and phosphatase inhibitor cocktail

2 (Sigma), and stocked at �80�C. Equal amounts of each

sample were electrophoresed on 7.5% SDS–PAGE gel,

then transferred to polyvinylidene difluoride membranes.

After blocking with Blocking One-P (Nacarai tesque,

Kyoto, Japan) for 30min, the membranes were incubated

with one of the following, as the primary antibody:

anti-phosphorylated ERK 1/2, anti-total ERK 1/2,

anti-phosphorylated PLCg, anti-total PLCg, anti-

phosphorylated Akt, anti-total Akt or anti b-actin
antibody. After this incubation, the membrane was

incubated with secondary antibody: HRP conjugated

goat anti-rabbit or -mouse IgG (Pierce Biotechnology,

Rockford). The immunoreactive bands were visualized

using Super Signal� West Femto Maximum Sensitivity

Substrate (Pierce Biotechnology) and measured using

GelPro (Media Cybernetics, Silver Spring, MD).

Oxygen-induced Retinopathy in Mice

Oxygen-induced retinopathy was induced in newborn mice

as previously described by Smith et al. (18) Briefly, on

post-natal day 7 (P7) mice were placed along with their

dam into a custom-built chamber in which the partial

pressure of oxygen was maintained at 75%. Mice were

maintained in 75% oxygen for up to 5 days (P12), after

which they were transferred back to their cage in room air.

VME (300 ng per eye) or saline was intravitreously injected

on P12. Mice were anesthetized by intraperitoneal admin-

istration of sodium pentobarbital salt (Dainippon sumi-

tomo pharma, Osaka, Japan) at 50mgkg�1. Through a

median sternotomy, the left ventricle of the heart was

identified and perfused with FITC dextran (20mg per

animal). Then, the eyes were enucleated and placed in

4% paraformaldehyde. Under a dissecting microscope,

the retina was removed, flat-mounted by radical

cutting and covered with a coverslip after a few drops

of VECTASHIELD� mounting median (Vector

Laboratories, Burlingame, CA) had been placed on the

slide. Images of flat-mounted retinas were acquired via a

fluorescence microscope (BX50; OLYMPUS, Tokyo,

Japan) using a high-resolution charged-coupled device

camera (DP30BW; OLYMPUS, Tokyo, Japan). The areas

of neovascular tufts in the retina were measured using

imaging software (Metamorph; Universal Imaging Corp.,

Downingtown, PA).
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Measurement of 2,2-diphenyl-1-picrylhydrazyl

Radical-scavenging Activity

Radical-scavenging activity was measured by means of a
2,2-diphenyl-1-picrylhydrazyl (DPPH) assay (19). VME,
NAC and Trolox were dissolved and diluted in ethanol at
various concentrations and then 0.025mgml�1 DPPH in
ethanol was added, and the whole left to stand for 30min
at room temperature. This was followed by measurement
of the absorbance of the resulting solution at 517 nm
using a spectrophotometer.

Measurement of Lactate Dehydrogenase Activity

Lactate dehydrogenase (LDH) activity in the culture
medium containing VEGF with or without VME at
30 mgml�1 (the highest dose in this study) was measured
using an LDH cytoxicity Detection kit (Takara Bio,
Tokyo, Japan).

Statistical Analysis

Data are presented as means� SEM. Statistical com-
parisons were made using a one-way ANOVA followed
by a Student’s t-test, paired t-test or Dunnet’s multiple-
comparison test. A value of P<0.05 was considered to
indicate statistical significance.

Results

VME Inhibited VEGF-A-induced Tube Formation in

HUVEC Co-cultured with Fibroblast

Representative images of tube formation induced by
VEGF-A with or without VME are shown in Fig. 1A.
VME (0.3–30 mgml�1) concentration-dependently inhib-
ited tube formation and quantitative analysis showed that
VME at 1–30mgml�1 significantly inhibited tube area,
length, joints and paths (Fig. 1B–E). At 3 mgml�1 or
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Figure 1. VME inhibited tube formation induced by VEGF-A. Representative photographs of tube formation (A). Scale bar=100 mm. HUVECs

were co-cultured with human fibroblasts, as described in Methods section, and incubated for 11 days with or without the indicated concentrations of

VME, with the concomitant addition of VEGF-A (10 ngml�1). Tube formation was observed in five randomly chosen fields, and tube area (B),

length (C), joints (D) and paths (E) were measured using an Angiogenesis Image Analyzer. Data are shown as mean� SEM (n=3–6). C: Control.

*, P<0.05; **, P<0.01 versus VEGF-A (Dunnett’s multiple-comparison test). ***, P<0.01 versus Control (Student’s t-test).
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more, VME reduced all four parameters to the non-
treated control level (Fig. 1B–E).

GM6001 Inhibited VEGF-A-induced Tube Formation in

HUVEC Co-cultured with Fibroblast

GM6001 (10–100 mM) significantly inhibited VEGF-
A-induced tube formation in a concentration-dependent
manner (Fig. 2A–D). The highest concentration of
GM6001 used (100 mM) reduced tube formation to the
non-treated control level (Fig. 2A–D).

VME Inhibited VEGF-A-induced HUVEC Proliferation

Cell proliferation in HUVECs was increased to �200%
of control by VEGF-A (10 ngml�1) treatment (Fig. 3).
VME (3–30mgml�1) inhibited this proliferation in a
concentration-dependent manner, its effect being signifi-
cant at 3 mgml�1 or more (Fig. 3A). On the other hand,
VME alone (without VEGF-A) had little or no effect
on basal proliferation (Fig. 3A).

VME and GM6001 Inhibited VEGF-A-induced

HUVEC Migration

Cell migration in HUVECs was increased to 190% of
control by VEGF-A (10 ngml�1) treatment (Fig. 4).
VME (3–30mgml�1) inhibited this migration in a
concentration-dependent manner, its effect being signifi-
cant at both 10 and 30 mgml�1 (Fig. 4B). On the other
hand, VME (30mgml�1) alone had no effect on HUVEC
migration (versus control) (Fig. 4B). GM6001 (3–30mM)
significantly inhibited the HUVEC migration induced
by VEGF-A (10 ngml�1).

VME Inhibited VEGF-A-induced Phosphorylation of

ERK 1/2, but not that of PLCc

We analyzed the effects of VME on the signaling

pathways induced by VEGF-A. Activation of ERK 1/2

and PLCg has been reported to be involved in VEGF-

induced proliferation (20). Treatment with VEGF-A

(10 ngml�1) for 5min increased the phosphorylation of
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Figure 2. GM6001 inhibited tube formation induced by VEGF-A. HUVECs were co-cultured with human fibroblasts, as described in Methods

section, and incubated for 11 days with or without the indicated concentrations of GM6001, with the concomitant addition of VEGF-A (10 ngml�1).

Tube formation was observed in five randomly chosen fields, and tube area (A), length (B), joints (C) and paths (D) were measured using an

Angiogenesis Image Analyzer. Data are shown as mean� SEM (n=4–8). C: Control. **, P<0.01 versus VEGF-A (Dunnett’s multiple-comparison

test). ***, P<0.01 versus Control (Student’s t-test).
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ERK 1/2 (p-ERK 1/2) approximately 2.5-fold and the

phosphorylation of PLCg (p-PLCg) approximately

5.2-fold (Fig. 5A and B). VME (30 mgml�1) significantly

inhibited the VEGF-A-induced increase in p-ERK 1/2

(Fig. 5A), but not that in p-PLCg (Fig. 5B). VME

(30 mgml�1) had no effects on either p-ERK 1/2 or

p-PLCg (Fig. 5A and B).

VME Inhibited VEGF-A-induced Phosphorylation of Akt

Activation of Akt is known to be an important step
in the VEGF-induced migration of HUVECs (21,22).
Treatment with VEGF-A (10 ngml�1) for 10min
increased the phosphorylation of Akt (p-Akt) approxi-
mately 1.5-fold and VME (30 mgml�1) significantly
inhibited this increase (Fig. 5C).
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VME Inhibited Angiogenesis during Oxygen-induced

Retinopathy in Mice

The excessive neovascularizaion observed in flat-mounted
retinal sections obtained from mice after prolonged
exposure to 75% oxygen was estimated by analysis of
the vascular tufts. Representative images of such neo-
vascularization in mice treated with or without VME are
shown in Figs 6A and B. Intravitreal administration of
VME (300 ng per eye) significantly inhibited the area
of the neovascular tufts (versus vehicle) (Fig. 6C).

VME and Anti-oxidants Exhibited Radical-scavenging

Activity against DPPH Radical

The radical-scavenging activity of VME was compared
with those of NAC and Trolox using a DPPH assay. As
shown in Table 1, VME, NAC and Trolox concentration-
dependently exhibited radical scavenging ability against
DPPH radical, the IC50 values being 9.1 mgml�1, 23.1 mM
and 24.1 mM, respectively.

LDH Activity in HUVEC Culture Medium was not

Significantly Increased by Treatment of VME

We measured LDH activity in culture medium to
examine cytotoxicity of VME. LDH activity was
0.54� 0.12 Uml�1 (n=3) in VEGF plus VME
(30 mgml�1)-treated medium and 0.37� 0.07 Uml�1

(n=6) in VEGF-treated medium, and those activity of
LDH were not significantly different.

Discussion

In the present study, we found that VME inhibited
angiogenesis both in vitro and in vivo, and our results
suggest that its effect may be due in part to reductions in
cell proliferation and migration through inhibition of
both p-ERK 1/2 and p-Akt.
Angiogenesis is a multi-step process, and VEGF

promotes many of the events necessary for angiogenesis,
such as proliferation and migration of endothelial cells,
remodeling of extracellular matrix and formation of
capillary tubules (19). Extracellular-matrix degradation is
critical during angiogenesis, which requires proteolysis
of endothelial cells as well as synthesis of new matrix
components. Degradation of matrix components is
mediated by specific proteases called MMP, which are
produced by endothelial cells, fibroblasts, vascular
smooth muscle cells and reportedly also by myocytes
(23,24). Furthermore, in vitro and in vivo studies have
shown that MMP inhibitors (GM6001 and TIMP1, a
tissue inhibitor of metalloproteinase-1) decrease the
angiogenesis induced by VEGF (7,25,26). In the present
study, GM6001 inhibited VEGF-A-induced tube forma-
tion in HUVECs co-cultured with human fibroblast cells
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Figure 5. VME inhibited phosphorylations of ERK 1/2 and Akt

induced by VEGF-A, but not that of PLCg. Effects of VME

(30 mgml�1) on VEGF-A (10 ngml�1)-induced ERK 1/2 (A), PLCg
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(Fig. 2). These results suggest that MMP is an important

factor for angiogenesis.
Likewise,VME (0.3–30 mgml�1) inhibited VEGF-

A-induced tube formation (Fig. 1), its effect being

significant at 1–30 mgml�1. The antiangiogenic effect of

VME at 3 mgml�1 was almost equal to that of GM6001 at
100 mM. It has been reported that a number of berries,
including bilberry, inhibit angiogenesis in vivo (27) as well
as VEGF expression in human keratinocytes in vitro (16).
However, our finding is the first report demonstrating
that VME can inhibit VEGF-A-induced angiogenesis.
When we evaluated the effects of VME on the prolifera-
tion and migration of HUVECs, we found that VME
significantly inhibited VEGF-A-induced HUVEC prolif-
eration, although VME alone had no effect.
GM6001 strongly inhibited VEGF-A-induced HUVEC

migration. This result indicates that the inhibitory effect
of GM6001 on tube formation is mediated by a reduction
in cell migration through a suppression of MMP activity.
According to Lin et al. (28), an antioxidant substance,
NAC, inhibits the VEGF-A-induced migration of
HUVECs and its effect is mediated by an inhibition of
the Src (cytoplasmic protein tyrosine kinase) signal
pathway. Furthermore, Ushio-Fukai et al. (29) reported
that VEGF-induced endothelial cell signaling and angio-
genesis is tightly controlled by the reduction/oxidation
environment. Here, VME displayed radical-scavenging
activity (IC50=9.1 mgml�1) and significantly inhibited
VEGF-A-induced HUVEC proliferation at concentra-
tions of 3–30 mgml�1. Many berry species, including
bilberry, contain a lot of anthocyanins, which possess
antioxidant activities. Therefore, the inhibitory action of
VME on cell migration may be due in part to its
antioxidant effect.
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Figure 6. VME inhibited neovascular tufts on oxygen-induced retinopathy in mice. Retinal flat mounts were examined by FITC-dextran

angiography. Representative photographs of retina from saline-treated eye (A) and VME-treated eye (B). Scale bar=100mm. Areas of neovascular

tufts in saline- and VME-treated eyes (C). Each column and bar represents mean�SEM (n=9). *, P<0.05 versus Saline (paired t-test).

Table 1. Radical-scavenging activities of VME, NAC and Trolox

Treatments % radical-scavenging
activity

IC50 (95% confidence
limits)

VME 0.3 mgml�1 2.7� 0.77 9.1 (7.6–11.0) mgml�1

1 5.1� 0.15

3 16.4� 1.94

10 51.2� 2.57

30 70.0� 0.18

100 97.1� 0.86

NAC 3 mM 5.6� 0.31 23.1 (21.3–25.1) mM

10 18.0� 0.17

30 53.3� 1.82

100 90.5� 0.44

Trolox 3mM 6.3� 0.66 24.1 (22.2–26.3) mM

10 20.6� 0.29

30 61.9� 0.21

100 85.2� 0.86

VME, NAC, and Trolox were incubated with DPPH for 30min, and
the absorbance at 517 nm due to DPPH radical was determined. Data
are shown as mean� SEM. (n=5).
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Activation of the MAP kinases ERK 1/2 and/or PLCg
is important for the proliferation of HUVECs. We
therefore evaluated the effect of VME on phosphorylated
ERK 1/2 and PLCg. In this study, VME inhibited the
VEGF-A-induced phosphorylation of ERK 1/2, but not
that of PLCg. These results suggest that VME exert
a direct inhibition downstream of PLCg and upstream of
ERK 1/2 in the signaling cascade induced by VEGF-A.
Since activation of Akt is known to be important for the
migration of HUVECs, we also evaluated the effect of
VME on phosphorylated Akt. VME inhibited the
phosphorylation of Akt induced by VEGF-A. Ali et al.
(30) indicated that PD98059, an ERK 1/2 inhibitor,
inhibits the VEGF-A-induced proliferation of HUVECs,
but not migration, and LY294002, an Akt inhibitor,
inhibits both proliferation and migration. They concluded
that phosphorylation of ERK 1/2 induced proliferation
of HUVECs, and phosphorylation of Akt induced both
proliferation and migration of HUVECs. These findings
suggest that VME reduce the VEGF-A-induced prolif-
eration through inhibiting direct and/or upstream of
ERK 1/2 from downstream of PLCg, and the VEGF-
A-induced proliferation and migration through inhibiting
direct and/or upstream of Akt. However, further studies
are needed to clarify the precise molecular targets
for VME.
Recently, Sylvie et al. (31) reported that delphinidin,

a kind of anthocyanidin (non-glycosylated form of
anthocyanin), inhibits the VEGF-induced phosphoryla-
tion of ERK 1/2, its half maximal effect being
achieved at 11.8mM. In the present study, VME inhibited
VEGF-A-induced phosphorylation of ERK 1/2, an
�60% effect being achieved at 30 mgml�1. VME
(30 mgml�1), as used in this research, contains delphinidin
at �2 mM. Thus, we consider that the inhibitory effect of
VME on the VEGF-A-induced phosphorylation of ERK
1/2 may be mediated by delphinidin and/or other
constituents. Further studies will be needed to identify
the effective constituents of VME.
In our in vivo study, we examined the effect of VME

on angiogenesis using a murine oxygen-induced retino-
pathy model. Intravitreal administration of VME
(300 ng per eye) significantly inhibited the area of
neovascular tufts. We chose that concentration of
VME, because the concentration reached in the vitreous
body was an estimated 30 mgml�1. In the present in vitro
analysis, VME at 30 mgml�1 inhibited the tube formation,
HUVEC proliferation and migration and phosphoryla-
tions of ERK 1/2 and Akt induced by VEGF-A. Taken
together, the above observations suggest that VME
inhibit angiogenesis in vitro and in vivo within the same
range of concentrations. Furthermore, recent research
demonstrated that oxidative stress is associated with
increased production of VEGF under in vitro conditions,
and believed to be an upregulation of VEGF expression
during diabetes (32–34). Collectively, these reports and

our data suggest that the antioxidative effects of VME
may lead to an inhibition of VEGF expression, and that
by this mechanism VME may inhibit VEGF-induced
angiogenesis in the retina.
In conclusion, our findings indicate that VME inhibits

VEGF-induced angiogenesis, and that this effect is
mediated by inhibition of both cell proliferation and
migration. Further experiments will be needed to clarify
the major antiangiogenetic constituents of VME.
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